

Services & Products

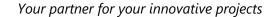
Arctic Engineering

Dynamic Positioning Basin Tests Full Scale Tests R&D

Dynamic Positioning

Design & Simulations FMEA & Commissioning Complex Operations R&D

Offshore Engineering


Hydrodynamics studies (BEM, CFD,...) Simulations Design Metocean analysis Route Planning

A

Drilling Engineering

Drilling Control R&D Drilling Simulations

Marine Energies

Offshore Wind Control Systems design Transport, Installation & Maintenance R&D

Services – R&D

Control Engineering System Engineering Applied Mathematics IT & Algorithms Big Data Simulations

•

Ocean intelligent Control Systems

Route Optimization Advanced Monitoring & Aid-Decision Autonomous Vessels Foil Control Systems About us...

R&D Company founded in 2015 Offices in Nantes & Paris (France) 11 PhDs & Engineers

Marine Energies

Data Science

System Engineering

Hydrodynamics

Control

Worldwide Projects

Naval

Proud Member of

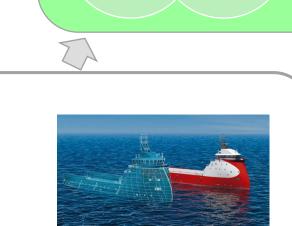
Property of D-ICE Engineering

www.dice-engineering.com

Technological, Economical & Societal Context

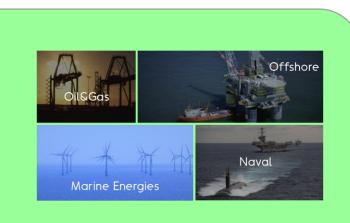
Our Goals

Profitable


Economical Crisis

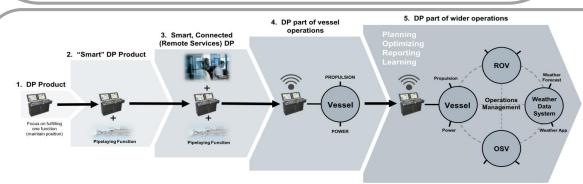
- Conventional energy has experienced one of the most severe crisis in 2015 (60% of price fall fot the brent crude)
- Slow recover since 2016
- However world Oil demand is still increasing
- But the situation has changed

≣ 8


Oil Price Forecast end of 2016 Source: Knoema

Low Carbon & **Energy Efficient**

Sustainable


From Digitalization To 2025 by DNV

Source HSB4U

Society Challenges & Changes

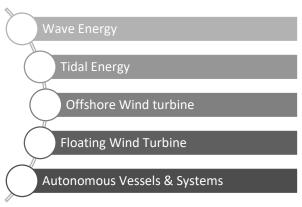
WHO SAID THAT DP DOES NOT RHYME WITH CYBERSECURITY?, Cadet & Rinnan, MTS DP Conference 2016

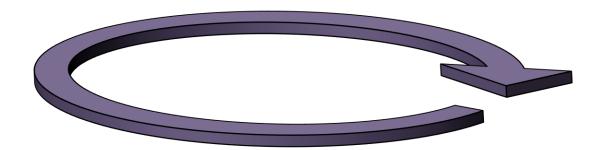
Digitalization

Source: bloomberg

Areas

SOFTWIND




Our R&D Activities

MODELLING

- Supported Projects
- Proposals
- In Mounting

SIBIS & Sesam-ICE JIP (DNV, Statoil, Kvaerner, Lundin, Gusto, Hsva, Multiconsult, Total)

T/I&M - OPERATIONS

Modelling & Marine Operations

Current R&D Programs

Control

Application

Physics Engine

DP & Tug Mooring Assist Operations

- Omnipresent throughout the life cycle of EMRs
- Any type of offshore technology involved
- Diversity and complexity + significant cost
- Risk factor (human, material, economic)
- Important Cost Reduction Lever (LCOE)

Fixed Offshore Wind

Tidal Turbines

Modelling & Marine Operations

A real expertise from full-scale commercial operations

Video credit : NRL | youtube

EXAMPLE OF ZOURITE

DP Jackup Vessel for Offshore Construction Operations in La Reunion [France]

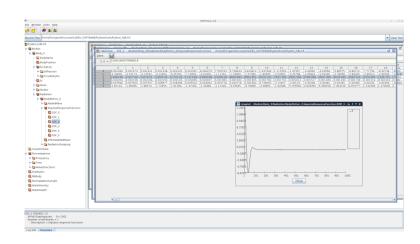
More details in the paper:

Challenging Shallow Water DP Jacking Operations - Design and Operational Feedback, Kerkeni *et al,* MTS DP Conference 2017

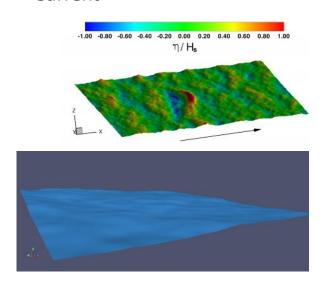
Tools

- HOS (ECN)
- Nemoh (ECN)
- FAST (NREL)
- FRyDoM (ECN/D-ICE)
- Capapy (D-ICE)
- OCEANICS (D-ICE)

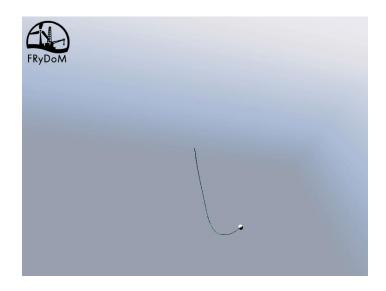
Property of D-ICE Engineering www.dice-engineering.com



Unique framework with advanced modelling tools


Hydrodynamics

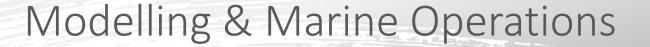
- Hydrodynamic Damping
- Waves effects
 - First Order
 - Second Order Drift
- Current / Wind Interactions
- (Active research area)

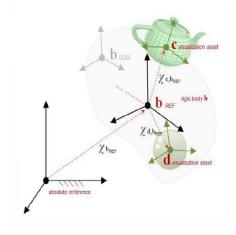

Sea States & Environments

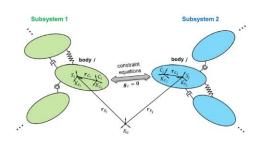
- Linear Sea States
- Advanced Sea States with HOS-OCEAN (LHEEA)
- Wind
- Current

Cables Modelling

- **Absolute Nodal Coordinate** Formulation (ANCF)
- Large deformation, FEA







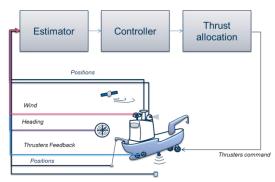
Multibody Dynamics

- Nonsmooth Constraint Rigid Body Mechanics
- **Contacts & Friction**
- Winch & Cranes

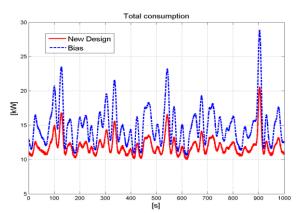
Software Architecture

Solid workspace relying on recognized open-source solutions

- Code versioning
- Build chain
- Architecture
- Continuous
- Matrix Algebra
- **Cross-platforms**
- Professional IDE
- Documentation

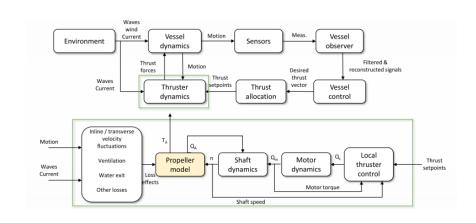


Vizualisation


- High Resolution
- Virtual Reality Ready

unity

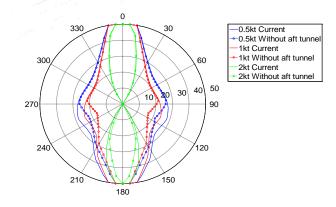
Control Systems

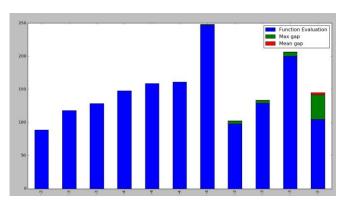

- Autopilots
- DP
- Advanced Control
- Nonlinear Filtering
- Optimization

"IMPROVED COST EFFICIENCY OF DP OPERATIONS BY ENHANCED THRUST ALLOCATION STRATEGY", Kerkeni et al., MTS DP Conference 2014

Propulsion & Thrusters

- Advanced Modelling of Thrusters
- Different Types of thrusters (azimuths, tunnels, propellers, rudders, foils)





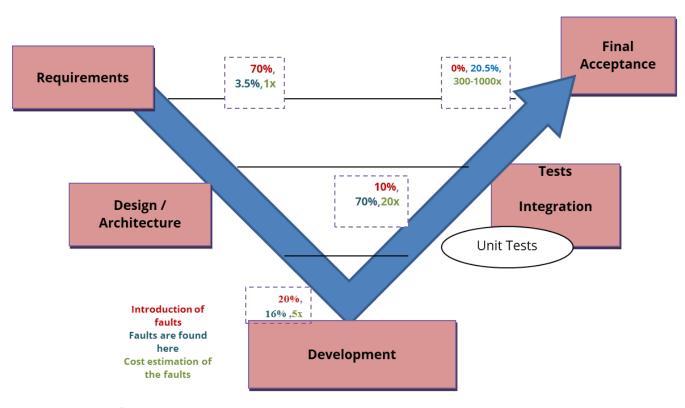
Modelling & Marine Operations

CapaPy

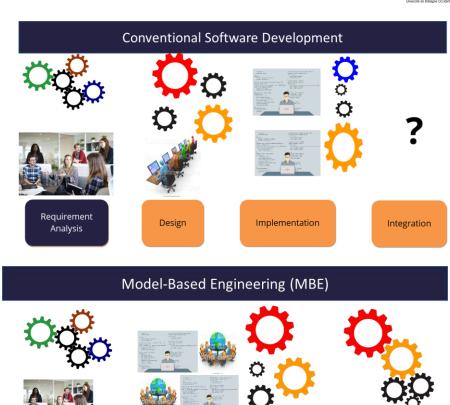
Development of advanced engineering software suite during the research project OCTOPODES - Innovative Control of Offshore **P**latforms, **O**ptimization and **D**esign of Marin**e** Operation**s**.

Advanced knowledge in Hydrodynamics, Control Systems and Mathematics have then been embedded in CapaPy, a versatile optimization software suite dedicated to capability plots calculations. The software is based on state of the art of advanced solvers for nonlinear optimization problems.

- CapaPy can solve **complex nonlinear problems** with nonlinear constraints.
- Written in Python, cross-platform, powerful features and a maximal flexibility.


References: O&G Majors, Shipyards, Ship Owners, etc.

DNESS Security of Marine Embedded Systems



Experience from aeronautics sector

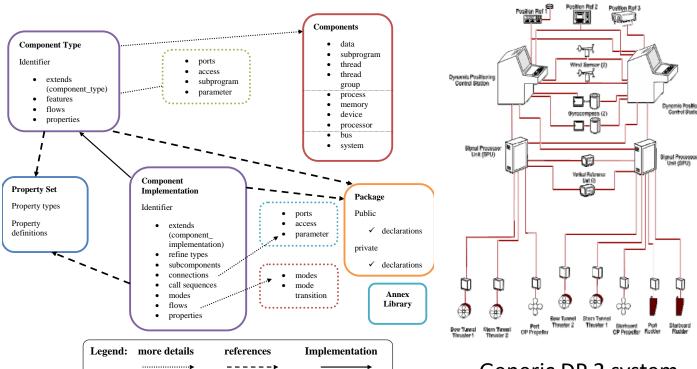
G. Tassey, "The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, RTI Project, 7007(011).," 2002.

MRE Focus

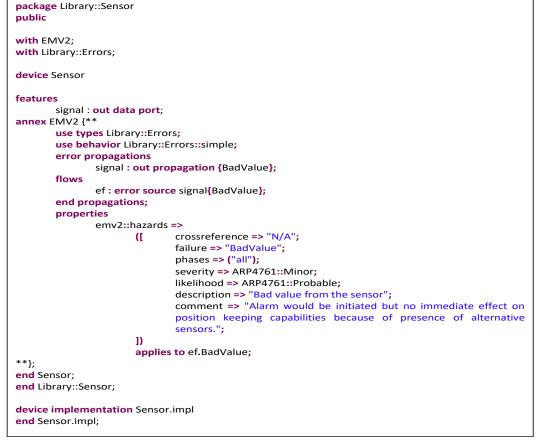
- Offshore Operations are today more and more complex
- Embedded systems of increasing complexity (Hardware / Software)

Design & Implementation

Integration


Requirement

Analysis



Security of Marine Embedded Systems

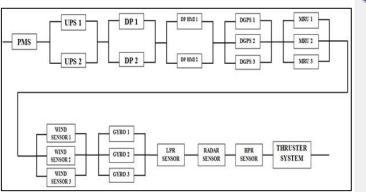
Generic DP 2 system

Extract of Modelling with AADL

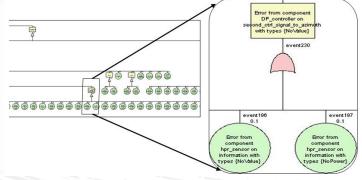
Property of D-ICE Engineering

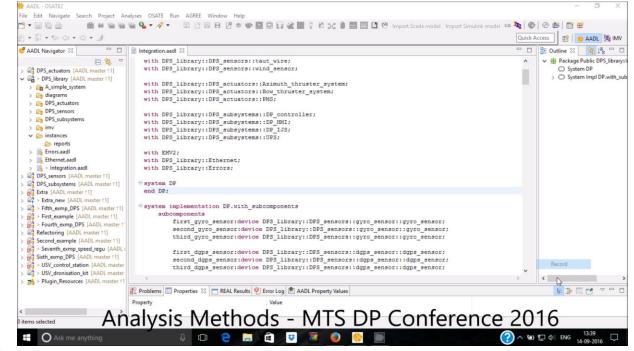
AADL

- Initiated by SAE (Society of Automotive Engineers)
- First release of OSATE (Open Source Architecture Tool Environment) in 2004 developped and maintained by Software Engineering Institute (SEI), Carnegie Mellon University
- Active community and strong ongoing works today



MADNESS Security of Marine Embedded Systems

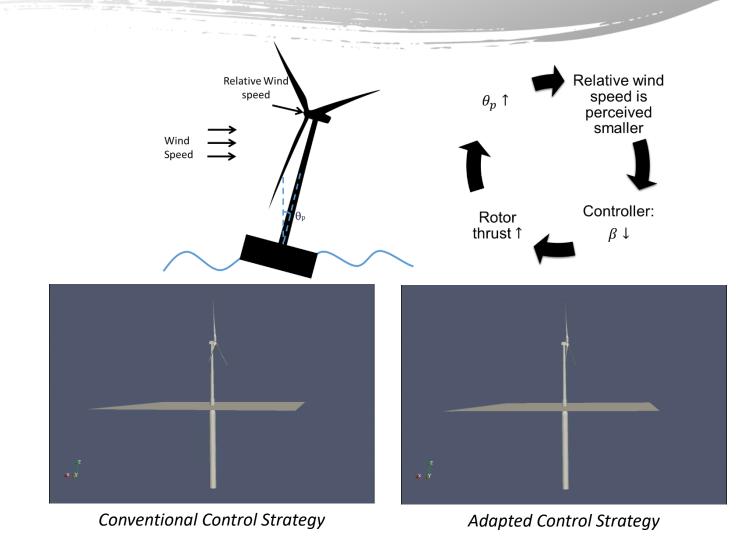

Reliability Block Diagram



Failure probability: 0.23053600000000002 Components involved: * PMS (device) * first UPS (device) * second_UPS (device) * first DP controller (device) * second_DP_controller (device) * first DP HMI (device) * second_DP_HMI (device) * first_dgps_sensor (device) * second_dgps_sensor (device) * third_dgps_sensor (device) * first_gyro_sensor (device) * second_gyro_sensor (device) * third_gyro_sensor (device) * first wind sensor (device) * second_wind_sensor (device) * third_wind_sensor (device) * hpr sensor (device) Ipr sensor (device) * radar sensor (device) * first_mru_sensor (device) * second mru sensor (device) * third_mru_sensor (device) * first bow thruster (device) * second bow thruster (device) * first azimuth thruster (device) second azimuth thruster (device)

Fault Tree Analyses

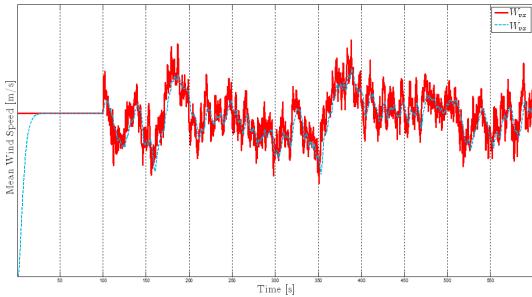
Description	Picture A 1 0	Truth table		
The "and" gate		Input A	Input B	Output
indicates the output occurs if all the input events are present.		Т	Т	Т
		T	F	F
		F	Т	F
		F	F	F
The "or" gate indicates the output occurs if at least one of the input events is present.	A →	Input A	Input B	Output
		Т	T	Т
		Т	F	Т
		F	T	Т
		F	F	F


- Complex Systems Architecture Modelling
- Multi-objective optimization
- Automatic analyzes
- Automatic FMEA
- Enhanced Methodology
- Safer systems

Floating Wind Turbine Control

D

- Main Known Issue : Negative Damping
 - Severe effects
 - Structural fatigue
- Tailored and Better Control can
 - Optimize platform responses
 - Anchor systems design
- Main Actual Field of Research
 - Wind / Sea-State Estimation
 - Advanced Model-Based Control

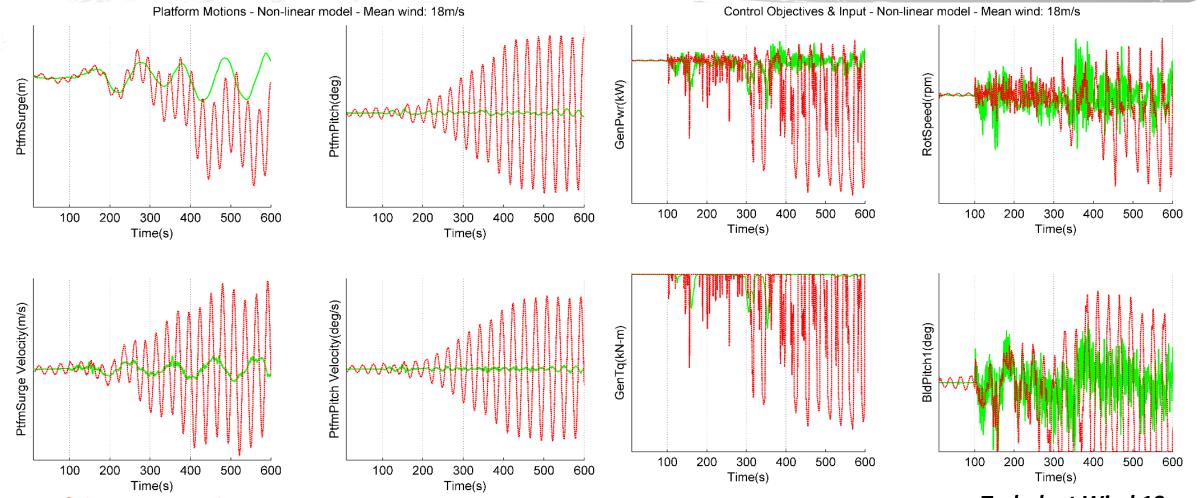


Floating Wind Turbine Control

D

- Main Contributions
 - Modelling
 - For Validation purposes
 - For Control purposes
 - Controller Scheme & Structure
 - Estimator
 - Advanced Control
 - Tuning Procedures & Design Methodology for the controller

Wind Speed Estimation

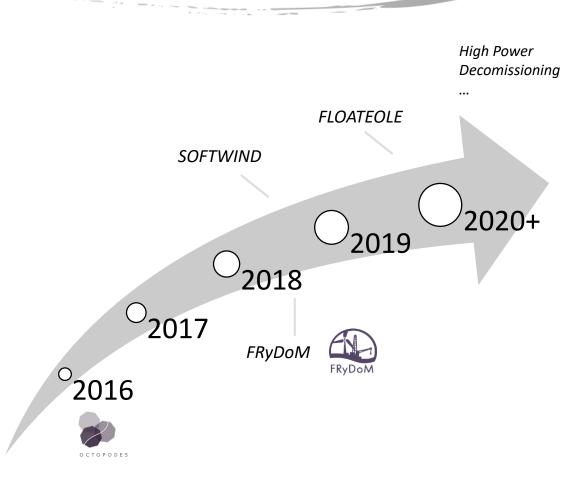


Actual simulated wind (red) & Estimation without wind sensor (blue)

- Nonlinear Kalman Based Estimator
- Model Based Estimation & Homotopy-Based Moving Horizon
- Optimality
- Online & Fast estimation
- Numerical efficient formulation

Floating Wind Turbine Control

State of the Art Control Turbulent Wind 18 m.s⁻¹


D-ICE Control

Property of D-ICE Engineering www.dice-engineering.com

Floating Wind Turbine R&D

- R&D Roadmap FOWT
 - Advanced Wind speed estimation
 - Advanced Sea-State estimation
 - Fully Coupled Nonlinear Control strategies (COFLOWING**)
 - Advanced Nonlinear Hydrodynamics
 - Artificial Intelligence & Big Data
 - Fatigue & Structural Analyses
 - Basin Tests (SOFTWIND 2018)
 - Full scale implementation
 - Advanced Designed Wind Farms
 - High Power Floating Wind Turbines
 - Advanced Design & Farm Effects (FLOATEOLE)
 - T/I&M (FRyDoM)
 - Decomissioning (FRyDoM)

Property of D-ICE Engineering www.dice-engineering.com

