

OFFSHORE WIND IFPEN Solutions and Research activities

EERA DeepWind – 18/01/2018 – Pauline Bozonnet

IFPEN offers along the offshore wind value chain

NEW ENERGIES

• A broad range of industrial solutions

WiSE[™] – Lidar improves site assessment methods Wind Speed Evaluation

NEW ENERGIES

Characterization of the wind resource = major driver of the economy of wind projects.

- The lidar is a sensor measuring wind speed, increasingly used in wind energy, especially offshore.
- Limited capacities for Turbulence Intensity evaluation, which drives: Wind turbine selection Production evaluation

WiSE[™] – Lidar developed by IFPEN, marketed by LeoSphere, is a signal processing software for lidar measurements.

WiSE[™] – Lidar improves site assessment methods

WiSE[™] – Lidar reduces the uncertainty on the measurement of turbulence intensity

- Currently tested
 by several pilot customers
 through the participation to IEA-Wind Task 32
- It will be available online to LeoSphere customers and for specific studies through IFPEN

• R&D version planed for floating lidars

NEW ENERGIES

WiSE[™] – Control optimizes wind turbine production and reduces LCOE using Lidar based active control

NEW ENERGIES

• Most modern wind turbines:

- real-time blade pitch and nacelle yaw control
- to optimize production and mitigate loads

 Based on feedback from the turbine sensors, only react afterwards

 Nacelle based lidars: long distance wind measurements
 control anticipation capacities

WiSE™ – Control is a system featuring Wind Speed Evaluation control strategies developed by IFPEN to take advantage of this anticipation

WiSE[™] – Control optimizes wind turbine production and reduces LCOE using Lidar based active control

- WiSE[™] Control features control strategies Wind Speed Evaluation leading to :
 - 20 % reduction of tower and blade extreme load
 - Fatigue lifetime increase by 5 to 10 years \rightarrow **Reduced maintenance**
 - 3 to 4 % increase of production thanks to an improved yaw control and transition management
 - A potential LCOE decrease of 5%
- The ANR funded SmartEole project will allow a semi-numerical validation on onshore wind turbines (2016-2017) Maïa Eoli

avent

- Full-scale demonstration project in preparation
- Extensions to floating wind and farm control ongoing

6

Deeplines Wind[™]: a fully coupled solution for simulation of fixed and floating wind turbines

■ Based on DeepLinesTM solver:

- Finite element solver
- Hydrodynamic loadings
- Aerodynamic loadings

- Computed in a dll (modularity)
- Commercial library: based on BEM
- In-house libraries: 2D and 3D vortex solvers

Fully coupled simulation: Aero-servo-hydro-elastic coupling

Deeplines Wind[™]: a fully coupled solution for simulation of fixed and floating wind turbines

- Modular aerodynamic library
 - Commercially available version:
 - BEM based
 - Used for the design of Hywind Scotland, Provence Grand Large, ...
 - Advanced simulation capacities (aerodynamics, wake) are available inside IFPEN for specific studies
 - Vortex Methods
 - Free-wake, lifting-line flow model CASTOR
 - 2D and 3D
 - HAWTs and VAWTs
 - Accurate load/near-wake predictions

PRINCIPIA

Deeplines wind validation

Aerodynamic libraries

BEM/Vortex Methods: MexNext project Blade loads, near-wake velocities

Coupled simulations

- Floating wind, validation on model tests data:
 - OC3, OC4, OC5
 - VALEF2: French project similar to OC5
 - TLP model test campaign

Aero-Elastic vortex Methods: EU Inflow project Blade loads, 600 kW VAWT

IFPEN-SBM partnership

Offshore track-record Innovation - R&D Joint technology development Broad offshore wind Field-proven mechanical knowledge components Energies nouvelles OFFSHORE Expertise in technology **EPCI** capabilities* integration **IFPEN** carries out coupled analysis Aero-hydro coupling : studies for SBM (ex PGL) Installation vessels Deeplines Wind[™]

Become a leader on floating wind emerging market

(*) EPCI: Engineering – Procurement – Construction - Installation

NEW ENERGIES

Floating wind : our solution

Mooring lines are inclined to cross slightly above nacelle → Fixed point

Minimal area at the surface Submerged buoyancy → Decreased wave loads, decreased tide and current effects

Catenary electrical cable configuration thanks to limited motions

NEW ENERGIES

Distributed buoyancy→ Stability during towing

Gravity based, piles or suction anchors → Compatible with all soil conditions

Floating wind : fabrication modularity, low draft, launching modes variety

SBM Offshore – IFPEN technology selected by EDF-EN

SBM Offshore & IFPEN were selected in 2016 by EDF-EN to design, build and install 3 floaters for a floating wind pilot farm offshore France (subject to the project achieving committed financing)

Turbine SWT 8.0-154 (8MW)

Provence Grand Large project: 3 SBM Offshore floaters equipped with 8 MW Siemens wind turbines (at sea in 2020)

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

